Radiotherapy Induced Changes of Masticatory Muscles and Parotid Glands on MRI in Patients with Nasopharyngeal Carcinoma

Taner Arpacı1, Gamze Uğurluer1, Gülhan Örekici1, Tuğana Akbaş1, Meltem Serin2

ABSTRACT

Objective: The aim of this study was to identify radiotherapy (RT) induced changes of masticatory muscles and parotid glands on magnetic resonance imaging (MRI) in patients with nasopharyngeal carcinoma (NPC).

Patients and Methods: Thirty-one patients treated with RT for NPC between 2009-2016 in our institution were included in the study. MRI examinations performed before and after RT were reviewed retrospectively. Transverse diameters and signal intensities of masticatory muscles and parotid glands were evaluated on T2 weighted axial MR images. Normal (hypointense) signal was scored as 0, mild hyperintensity as 1 and severe hyperintensity as 2.

Results: The mean interval between pre-RT MRI and last control MRI was 44 months (12-84 months). Reductions of transverse diameters were; right masseter (RM): 2.32mm (15%), left masseter (LM): 2.42mm (15.4%), right medial pterygoid (RMP): 1.26mm (8.7%), left medial pterygoid (LMP): 1.71mm (12%), right lateral pterygoid (RLP): 1.35mm (9.6%), left lateral pterygoid (LLP): 1.32mm (9.4%), right parotid gland (RP): 8.22mm (26%), left parotid gland (LP): 8.87mm (28%). T2 signal changes were; RM: mild 8 cases (26%), LM: mild 5 cases (16%), RMP: mild 5 cases (16%), severe 1 case (3.5%), LMP: mild 4 cases (13%), severe 2 cases (6.5%), RLP and LLP: mild 8 cases (26%), severe 3 cases (9.7%), RP: mild 10 cases (32%), severe 18 cases (58%), LP: mild 10 cases (32%), severe 17 cases (55%).

Conclusion: Volume loss and hyperintensity were mostly seen in parotid glands. Masseter was the muscle with highest rate of volume loss and lateral pyterygoid showed the highest rate of hyperintensity in masticatory muscles.

Key words: Magnetic resonance imaging, masticatory muscle, nasopharyngeal carcinoma, parotid gland, radiotherapy.

Correspondence: Assoc. Prof. Taner Arpacı
SHMYO Acıbadem University, Acıbadem Adana Hospital, Radiology, Adana, Turkey
Phone: +90 322 455 43 25
E-mail: taner.arpaci@acibadem.edu.tr

Received: February 01, 2018
Revised: March 06, 2018
Accepted: March 14, 2018
Ionising radiation leads to fibrosis, inflammation and atrophy of the masticatory muscles, restricts jaw mobility and induces trismus (1). Trismus is defined as restriction in the opening of mouth due to reasons like radiation, trauma, surgery or tetanus (2). It may affect the quality of life with difficulties in nutrition, communication and oral hygiene (3). Radiation may also cause mucositis, loss of salivary gland function, dental decay and osteoradionecrosis (ORN) in addition to systemic complications (1). Radiation induced damage and atrophy of the parotid glands result in persistent xerostomia which is related with problems in mastication, swallowing and dental complications (4,5). Masticatory muscles and temporomandibular joint (TMJ) are late-responding tissues to the radiation when compared with other oral tissues. Because of their late response, radiation induced tissue alterations emerge after months or years and are usually mistaken as recurrent tumor (6). Magnetic resonance imaging (MRI) demonstrates radiotherapy (RT) related soft tissue changes such as muscle fibrosis, inflammation and denervation atrophy (7-9). Early detection of these findings enables timely management of the clinical symptoms (10). However, there are only a few reported studies evaluating these findings. The aim of this retrospective study was to identify RT induced changes of masticatory muscles and parotid glands on MRI in patients with nasopharyngeal carcinoma (NPC).

Materials and methods

We received approval from our institutional ethical committee and included 31 patients from our institution treated with RT and followed up periodically for NPC between 2009 and 2016. Intensity Modulated Radiotherapy (IMRT) or Volumetric Modulated Arc Therapy (VMAT) techniques were used for the radiation therapy. Radiotherapy planning was performed by using linear accelerator and 6 MV (megavoltage) photon energy. Seventy Gy was delivered for primary nasopharyngeal tumor and metastatic lymph nodes, 60 Gy to the high-risk regions and 46-54 Gy for elective irradiation. Fraction dose was 165-212 cGy for 33 days. The patients received concurrent cisplatin weekly. Magnetic resonance imaging examinations performed before the beginning of RT and annual control MRI scans after RT were reviewed by the same radiologist retrospectively. Magnetic resonance imaging (1.5 Tesla, Siemens Magnetom Avanto Tim 76x18, Erlangen, Germany) protocol of the nasopharynx included axial T1W, axial and sagittal T2W, axial and coronal T2W with fat saturation, axial and coronal T1W post-gadolinium with fat saturation sequences, diffusion weighted imaging (DWI) and apparent diffusion coefficient (ADC) map. Maximum transvers diameters and signal intensities of the masticatory muscles (masseter, medial and lateral pterygoid, temporalis) and parotid glands were evaluated on T2-weighted turbo spin-echo (TSE) axial MR images (TR, average 3100 ms; TE, average 100 ms; slice thickness, 4 mm; gap, 1 mm; FOV, 190-240 mm; matrix, 384x384) and were recorded. For masticatory muscles and parotid glands, normal (hypointense) signal was scored as “0”, mild hyperintensity was scored as “1” and severe hyperintensity with atrophy were scored as “2” (Figure 1-5). Contrast enhancement of masticatory muscles and parotid glands, normal (hypointense) signal was scored as “0”, mild hyperintensity was scored as “1” and severe hyperintensity with atrophy were scored as “2” (Figure 1-5). Contrast enhancement of masticatory muscles and parotid glands were evaluated on post-gadolinium T1-weighted turbo spin-echo (TSE) with fat saturation axial MR images. Mild enhancement was rated as “1” and prominent enhancement was rated as “2”. Magnetic resonance imaging abnormalities of the mandibula, maxilla,
Figure 2 (A,B). 54 year-old woman with nasopharyngeal carcinoma (NPC) who was treated with RT (70 Gy for primary NPC and metastatic lymph nodes, 60 Gy to the high-risk regions and 46-54 Gy for elective irradiation) and concurrent weekly cisplatin 62 months ago. Axial T2-weighted MR image performed before RT (A) and 60 months after RT (B) show mild reduction of transverse diameters and mild increase (score 1) of signal intensity in bilateral masseter muscles (arrows).

Figure 3 (A,B). Axial T2-weighted pre-RT (A) and post-RT (B) MR images of the same patient with figure 2 reveal mild decrease of transverse diameters and mild increase (score 1) of signal intensity in bilateral medial pterygoid muscles (arrows).

Figure 4 (A,B). 33 year-old woman with nasopharyngeal carcinoma (NPC) who was treated with RT (70 Gy for primary NPC and metastatic lymph nodes, 60 Gy to the high-risk regions and 46-54 Gy for elective irradiation) and concurrent weekly cisplatin 81 months ago. Axial T2-weighted MR image taken before RT (A) and 72 months after RT (B) demonstrate prominent volume loss and severe hyperintensity (score 2) in right lateral pterygoid muscle (arrow). Note complete regression of the right NPC after RT.
skull base and TMJ- like marrow edema, bone destruction and ORN were recorded. It was recorded if the patients developed clinically trismus or not. The patients who had invasive disease involving the masticator structures during or after RT and had undergone previous surgery of the nasopharynx, skull base or maxillofacial region were excluded from the study. The Statistical Package for the Social Sciences for Windows (SPSS Inc.; version 20, IBM, Chicago, USA), Student’s T Test and Chi-Squared analysis were used for statistical evaluation. P value less than 0.05 was considered as statistically significant.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Informed consent was obtained from all patients participating in the study.

Results
Thirty-one patients (20 men, 11 women; median age 45 years, range 19–80 years) with a total of 62 MRI exams were included in this study. Table 1 lists the characteristics of the patients. The mean interval between the first MRI performed before the beginning of RT and the last post-RT annual control MRI was 44 months (12-84 months). The reductions in transverse diameters of masticatory muscles and parotid glands between the first and last MRI are listed in Table 2. These results were statistically significant (p<0.05). Changes of the T2 signal intensity in masticatory muscles and parotid glands between the first and last MRI are mentioned in Table 3. Volume loss and hyperintensity were mostly seen in the parotid glands, which were more prominent in the deep lobes than the superficial lobes. Except temporalis, all masticatory muscles showed statistically significant volume loss. Masseter muscles demonstrated the most amount of volume loss.
and lateral pyterygoid muscles showed the highest rate of hyperintensity in masticatory muscles. Significant contrast enhancement was not detected in the masticatory muscles and parotid glands (p>0.05). There was not a statistical correlation between the tumor location (right-left) and mentioned changes of masticatory muscles and parotid glands (p>0.05). Trismus occurred in 15 (10 men, 5 women) cases (48%). Statistical correlation was not detected between the occurrence of trismus and masticatory muscle volume loss/ hyperintensity (p>0.05).

Discussion

Radiation therapy is crucial in the treatment of head and neck cancers but frequently damages the adjacent healthy tissues immediately or after many years (11). Dose of radiation, fraction time interval and the ratio of radiation dose/tissue volume identify the intensity of the complications (11). Although radiation-induced tissue injuries usually occur and recover immediately after the end of RT, residual tissue ischemia and fibrosis may be asymptomatic for months or years (12,13). Masticator muscle fibrosis is most likely the main reason of RT induced trismus and there is direct correlation between RT dose and restriction of the dental gap (14). Radiotherapy induced MRI findings of the masticatory muscles has been mentioned rarely in the literature. Magnetic resonance imaging enables evaluation of thickness, area, signal intensity and contours of the masticatory muscles and allows diagnosis of RT induced muscle damage by determining edema, fibrosis, inflammation and denervation (7,8,11,15). Masticatory muscles usually demonstrate increased T2 hyperintensity and post-gadolinium enhancement after RT (11). In their study of 35 NPC patients, with retrospective MRI analysis and without considering the correlation of RT doses, Bhatia et al. (16) reported these findings in pterygoid, masseter and temporalis muscles in 45% of patients suffering trismus. They believed, MRI probably could not determine muscular fibrosis or different diseases that have participated in trismus in remaining 55% of their patients. In our study, 70% of MRI series showed no signal abnormality in the masticatory muscles. The most frequent signal abnormality was detected in lateral pterygoid (RLP-LLP) muscles when compared with the other masticatory muscles, this result was consistent with the study of Bhatia et al. (16). We did not qualify the RT dose of each muscle, but probably lateral pterygoid muscles were exposed to a higher dose. Direct relation between the masticatory RT dose and restriction of mouth opening were reported in a few previous studies (14). Chong et al. (17) reported that 3 of their 5 patients (60%) with radiation induced mandibular ORN demonstrated T2 hyperintensity in the ipsilateral masseter and pterygoid muscles and two of these three patients also showed marked thickening of the mentioned masticatory muscles close to the ORN. In our study of 31 patients, RT induced mandibular marrow edema, bone destruction and ORN were not detected. In their single case, Ariji et al. (18) published prominent hyperintensity of whole masticatory muscles showing denervation atrophy caused by mandibular nerve damage a few months after RT. Denervation of masticatory muscles demonstrate edema, inflammation, fatty infiltration and atrophy respectively (8,15). In our study, all masticatory muscles showed statistically significant volume loss except temporalis muscle. Masseter muscles demonstrated

Table 3. Increase of T2 signal in masticatory muscles and parotid glands.

<table>
<thead>
<tr>
<th>MUSCLE</th>
<th>Normal T2 signal (score0) number of patients (n) / (%)</th>
<th>Mild T2 signal (score1) number of patients (n) / (%)</th>
<th>Severe T2 signal (score2) number of patients (n) / (%)</th>
<th>TOTAL n / (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM</td>
<td>23 (74%)</td>
<td>8 (26%)</td>
<td>0</td>
<td>8 (26%)</td>
</tr>
<tr>
<td>LM</td>
<td>26 (84%)</td>
<td>5 (16%)</td>
<td>0</td>
<td>5 (16%)</td>
</tr>
<tr>
<td>RMP</td>
<td>25 (80.5%)</td>
<td>5 (16%)</td>
<td>1 (3.5%)</td>
<td>6 (19.5%)</td>
</tr>
<tr>
<td>LMP</td>
<td>25 (80.5%)</td>
<td>4 (13%)</td>
<td>2 (6.5%)</td>
<td>6 (19.5%)</td>
</tr>
<tr>
<td>RLP</td>
<td>20 (64%)</td>
<td>8 (26%)</td>
<td>3 (9.7%)</td>
<td>11 (35.7%)</td>
</tr>
<tr>
<td>LLP</td>
<td>20 (64%)</td>
<td>8 (26%)</td>
<td>3 (9.7%)</td>
<td>11 (35.7%)</td>
</tr>
<tr>
<td>PAROTIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP</td>
<td>3 (10%)</td>
<td>10 (32%)</td>
<td>18 (58%)</td>
<td>28 (90%)</td>
</tr>
<tr>
<td>LP</td>
<td>4 (13%)</td>
<td>10 (32%)</td>
<td>17 (55%)</td>
<td>27 (87%)</td>
</tr>
</tbody>
</table>

the highest rate of volume loss. We did not find muscle size to be a significant finding to detect radiation induced trismus which was consistent with the study of Bhatia et al. Statistical correlation was not detected between the occurrence of trismus, masticatory muscle volume loss and hyperintensity. Significant contrast enhancement was not detected in the masticatory muscles. We also evaluated the RT induced size and signal abnormalities of the parotid glands which were found more frequent than the masticatory muscles. This was probably related with the anatomical proximity of parotid glands and masticator muscles in planning RT (19). Wu et al. (20) reported that all of their 18 patients showed reduction in parotid gland volumes after RT. Their overall mean volume reduction was about 35% and was related with the mean doses of the parotid glands. In our study, the average reduction in transvers diameter of parotis were about 27%. Our study had several limitations due to the technical difficulties. First, we did not calculate the RT dose given to the each masticatory muscle and parotid gland. We should have evaluated the relationship between the RT dose and RT induced MRI changes. Also, we should have measured the pre-RT and post-RT volumes instead of muscle and gland thickness for more accurate comparison.

Conclusion

RT leads to atrophy of the masticatory muscles and induces trismus which is defined as restriction in mouth opening and may affect the quality of life with difficulties in nutrition, communication and oral hygiene (1-3). RT induced damage and atrophy of the parotid glands results in persistent xerostomia which is related with problems in mastication, swallowing and dental complications (4,5). RT induced muscle and salivary gland changes can be detected by using MRI (8). This retrospective study has determined two main MRI abnormalities like volume loss and increased signal in the masticatory muscles and parotid glands. Early detection of these findings enables timely management of the clinical symptoms like trismus and xerostomia.

References

