An Overview to Cytokeratin Pattern of Cholesteatoma

Ahmet Koç, Emrah Emre
Acibadem University School of Medicine, Department of Otorhinolaryngology, Istanbul, Turkey

ABSTRACT
Cholesteatoma is a destructive pathology characterized with progressive and chronic infiltration of keratinized squamous epithelium that can be seen the middle ear and mastoid regions of temporal bone. It has serious intra and extracranial complications which can be difficult to manage. Embryologic remnants of squamous epithelium, squamous metaplasia of middle ear epithelium, migration of epidermal cells from external ear canal and tympanic membrane and cell seeding because of middle ear surgery or trauma were all stated as causes of cholesteatoma. Cytokeratins are important markers of cell differentiation. The patterns of cytokeratin expression correlate well with the state of keratinocyte proliferation, migration and differentiation. These patterns are known to be affected during the formation of cholesteatoma. Increasing our knowledge about cytokeratin patterns may help us understand the unknown formation of cholesteatoma. In this review article, a literature survey was done about cytokeratin patterns of cholesteatoma.

Key words: cholesteatoma, cytokeratin
In later years, some surgeons have tried to more conservative methods because of the morbidity of radical procedures (modified radical operation – Bryant 1906, radical conservative operation – Bondy 1910). After World War II, infections were taken to control with the introduction of antibiotics. With developing technological possibilities, tympanoplastic operations began to take place in surgical interventions. At these years again, self-containing mechanism of the outer ear canal and the mucous layer of middle ear were defined (5). In the next period, closed techniques (Jansen – posterior tympanotomy (6), Sheey et al – intact canal wall (7), Portmann – closed technique (8)) were popularized. Today, advantages and disadvantages of open and versus closed techniques are being discussed with notifying many surgical serials (9,10).

In the formation of cholesteatoma; embryological remnants of squamous epithelium (11), squamous metaplasia of middle ear epithelium (12), migration of epithelial cells from external auditory meatus or tympanic membrane through retraction, or through basal cell proliferation or through perforated tympanic membrane (13), sprinkled of epithelial cells by middle ear surgery or trauma (14) were all blamed.

Cholesteatoma can be studied under four headings:

1) external ear canal cholesteatoma,
2) iatrogenic cholesteatoma,
3) congenital cholesteatoma,
4) acquired cholesteatoma.

Acquired cholesteatoma is divided into two parts: primary acquired and secondary acquired. In primary acquired cholesteatoma, the Eustachian tube is open and the tympanic membrane is intact. Its formation is considered from expansion of external tympanic membrane epithelium to middle ear cavity, not remnants of embryological life. In secondary acquired cholesteatoma, cholesteatoma is formed by migration of epithelium to middle ear by way of marginal or attic perforation. Invagination, basal cell hyperplasia, otitis media with effusion and metaplasia are accused in primary acquired cholesteatoma, whereas implantation and epithelial invasion are accused in secondary acquired cholesteatoma and iatrogenic cholesteatoma. Congenital cholesteatoma can take origin from petrous apex, mastoid region, middle ear and external auditory canal (15).

The most appropriate description for cholesteatoma is, “skin in the wrong place with wrong healing process”. Cholesteatoma consist of keratinizing squamous epithelium with a sharp boundary across to middle ear mucosa. It has all the layers of skin with different thicknesses. Continuous renewal layer of the skin is the basal germinative layer. It produces new cells consistently. Skin cells are constantly renewed while dead cells are thrown out by desquamated lamella. Dead cells form the white lamella of cholesteatoma by accumulation. Basal germinative layer with surrounding connective tissue called corion, gets the name of “matrix” and creates the generative layer of cholesteatoma. Matrix is the part of cholesteatoma which in contact with middle ear walls. Continuous keratin production is the important characteristic of cholesteatoma. As a result, cholesteatoma is a pseudo-tumor with accumulation of desquamated epithelium and keratin comes from basal germinative epithelium and stratum (st) corneum (16,17).

Dead cells in the matrix are settled in layers on each other. This arrangement is lost away from matrix, because of this, the center of cholesteatoma has a amorphous character. As the infection progresses, heavy fat acids and cholesterol crystals which give the bad smell of cholesteatoma arise. In addition to this, granulation tissue and a papillary structure are observed around the matrix (16,17).

The epithelium of cholesteatoma is thinner than skin. It consists of four layers: st. germinativum, st. spinosum, st. granulosum and st. corneum. Keratin arises from the cells of st. corneum.

Why does the skin of external canal moving into middle ear and how do the epidermal cell hyperplasia and keratinization take place?. Answers of these questions are investigated with immunohistochemical studies. Skin of the external ear canal and cholesteatoma originate from the same cells. The differences are the presence of papillary proliferation reach out to the subepithelial layer and Langerhans cells. Their ratio is higher in cholesteatoma than canal skin. They are scattered at different levels in stratified squamous epithelium and infiltrated to the underlying subepithelial tissue. Langerhans cells which involved in st. spinosum are placed between keratinocytes. Smaller Merkel cells are present in st. germinativum. Bremond pointed out that these cells are not present in normal middle ear mucosa, he also added determining of these cells in the middle ear is the proof of the migration theory (16).
Koç A and Emre E

Kaneko et al (18) demonstrated keratin directly penetrated into destructed bone tissue because of fragmentation of matrix. According to Abramson et al (19), frequent occurrence of bone resorption is related to excessive production of keratin and epithelial debris. Creating foreign body reaction by keratin and epithelial debris was demonstrated in animal studies by Kaneko et al and Abramson et al. Keratin also makes an ideal environment for microorganisms. It provides high concentrations of microorganisms by blocking of drainage of inflammatory flow and also makes a low oxygenated ambient for evolving of anaerobic bacteria.

The basic proteins of the cytoskeleton are; microtubules, microfilaments and intermediate filaments. Intermediate filaments are divided into five groups according to specific appearances: vimentin, desmin, glial fibrin protein, neurofilament proteins and cyrokeratins (20). Cytokeratins (Ck) are the most complex and diverse polypeptide groups between the intermediate filaments of human epithelial cells and are important determinants of all differentiation (21-23). Cytokeratins have been introduced as markers of cellular proliferation. They are insoluble, low-molecular – weight proteins. Special forms are found according to the type of epithelium (e.g. simple, stratified, transitional), the location of cell in the epithelium, stage of development of the epithelium and the relative stage of keratinocyte differentiation and tissue development (23-28). Biochemical studies and studies with monoclonal antibodies demonstrated 21 soft and 8 hard cytokeratins (20,21,29). Soft cytokeratins are divided into two main groups; group 1) relatively bigger and basic polypeptides, numbered from 1 to 8, group 2) relatively smaller and acidic polypeptides numbered from 9 to 21. Epithelium is defined as its cytokeratin pattern. Differences of acidic and basic cytokeratins are correlated with the diversity of epithelium. Studies have revealed that some of the general rules:

- filament formation needs polymerization of one acidic and one basic cytokeratin,
- cytokeratin 7,8,18 and 19 are located usually in simple epithelium,
- cytokeratin 5 and 14 are located in basal layers of stratified and complex epithelium,
- cytokeratin 1,2,10 and 11 are located in suprabasal layers of cornified epithelium,
- cytokeratin 4 and 13 are located in non-cornified epithelium,
- cytokeratin 6 and 16 are located in hyperproliferated epithelium,
- cytokeratin pattern of stratified epithelium may vary locally, for example differentiated cells of epidermis have cytokeratin 1 and 10,
- whereas non-keratinized oral mucosa has cytokeratin 4 and 13.

The pattern may change in malign transformation, in the cell cultures, in the wound healing and in the case of inflammation. In the pathogenesis of inflammatory diseases, cytokeratins express their role and act as messengers between cells. Cytokeratins are released by macrophages, lymphocytes and other cells at the site of infection and inflammation. Cytokeratin polypeptides can be demonstrated by immunohistochemical methods using monoclonal antibodies.

The mechanism of region-specific occurrence of cytokeratins is not fully understood. During development, epithelial – mesenchymal relationships due to regional differences may be responsible for this.

In order to elucidate the pathogenesis of cholesteatoma, so many studies have been performed related to distribution pattern of cytokeratins (28,30-42). Cytokeratins can be used as proliferation, migration and differentiation markers. Studies on the appearance of cytokeratins in cholesteatoma revealed that cytokeratin pattern of cholesteatoma looks like external canal skin and points the hyperproliferative stage (31,35,36). Lee et al (43) used monoclonal antibodies for revealing and comparing the cytokeratin structure of normal canal skin and cholesteatoma. He determined that there was not any difference in staining patterns. Kakoi et al (20) examined cytokeratins of cholesteatoma and epithelial differentiations. They used cytokeratins of pharyngeal mucosa as control group and determined cytokeratin 1,5,10 and 14 in cholesteatoma. Cytokeratin 5 and 14 were synthesized in basal lamina cells and are used as squamous epithelial marker. Otherwise cytokeratin 1-10 synthesized in suprabasal layer cells and they were the markers for keratinization in squamous epithelium or differentiation (44). Sasaki et al (45) studied cytokeratin 6 which was observed in epidermal hyperproliferative stage in epidermis of cholesteatoma and cytokeratin 13 which was observed in active cell proliferation in epidermal cells. In this immunohistochemical study, cytokeratin 16 was showed in suprabasal layers of cholesteatoma, canal skin and tympanic membrane. These results are similar to the results in active psoriatic lesions (46). According to Sasaki et al (45), these results suggest that cholesteatoma, canal skin and tympanic membrane are all in hyperproliferative stage. Ergun
It is thought that epidermal cytokeratin pattern of cholesteatoma points the epithelial migration, in addition non-epidermal cytokeratin points the hyperproliferative or ectopic metaplasia (35). There are various ultrastructural (28,36,39), immunohistochemical (23,31,33,35-38,40,42,48,49) and clinic studies support that epithelial migration is the most common cause of cholesteatoma. When st. corneum layer of cholesteatoma is examined with electron microscopy, the findings are similar to the findings of deep part of external ear canal and pars flaccida part of tympanic membrane. This finding supports the hypothesis that cholesteatoma is formed from epithelial migration of tympanic membrane and external ear canal (28). Immunohistochemical studies of cytokeratins indicate that cholesteatoma arises from keratinized epithelium of tympanic membrane and canal (32,33,35,42). In some studies, it was shown that, in the region where normal epithelium meets cholesteatoma, there were active keratinocytes indicating proliferation and migration (40,41). Nevertheless, normal squamous epithelium has not any migration capability to middle ear (30). For the migration of squamous epithelium, a formation like inflammation, granulation tissue or organized effusion is required acting as a bridge (41). Olszewska et al (50) studied with Ck 10-14-18-19-34 in congenital cholesteatoma epithelium, pediatric acquired cholesteatoma epithelium, middle ear mucosa, glandular epithelium and external ear canal (skin) epithelium. Olszewska et al demonstrated an identical expression pattern of Ck 10-14-18-19 and 34 antigens in the matrix of congenital and acquired pediatric cholesteatoma. According to Olszewska et al, this finding supports the hypothesis that both types of cholesteatoma have an epidermal origin. In addition to this, in this study, the matrix of acquired cholesteatoma shows the same characteristics as the external matrix suggesting the theory that cholesteatoma has an epidermal origin. Lepercque et al (48) observed a similar cytokeratin pattern in middle ear cholesteatoma, annular region of the external meatus and the lateral side of eardrum. With these findings Lepercque et al stated that cholesteatoma originates from external ear canal or the lateral side of the tympanic membrane.

Epithelial cell proliferation is another mechanism proposed in the pathogenesis of cholesteatoma. Some studies have defined the hyperproliferated behavior of cholesteatoma epithelium according to the expression of Ck 4,10,13,14,16 and 19 (37,51-53). This theory was supported by experimental animal (23,36) and human (35,38,49) studies. In their experimental study which was conducted with cytokeratins, Vennix et al (40) argued that cholesteatoma has an epidermal origin. They advocated that non-epidermal cytokeratins like Ck 4, Ck 13 and Ck 16 indicate hyperproliferation rather than metaplasia. They also added that infection cause proliferation of canal epidermis which transplanted in middle ear, and this finding supported the progression of cholesteatoma was connected to inflammatory process (23). Increased appearance of Ck 13 and 16 which are the markers of hyperproliferative keratinocytes has been shown in cholesteatoma (38,46,49,54). In immunohistochemical studies, there are remarkable differences between the intensity and localization of certain cytokeratins. These changes may be related to an altered process of differentiation. Olszewska et al observed Ck 10 in all suprabasal cell layers of the meatal skin and congenital cholesteatoma. Ck 10 is known as a keratinization marker and corresponds the extent of differentiation within keratinocytes. While Olszewska et al (50) considered that Ck 10 expression was affected by the extent of cholesteatoma like Kim et al (53), others demonstrated a decrease of Ck 10 expression in cholesteatoma (37,55,59). Liang et al (52) observed the expression of Ck 10 in the granular and spinous layers of the external ear canal epidermis and superficial layer of epidermoid formation. While Liang et al didn’t observe positive immunohistochemical reaction with staining for Ck 19 within basal and suprabasal keratinocytes in the epidermis or in the cholesteatoma epithelium, Olszewska et al observed definitely positive reactions with Ck 19 antibodies within the middle ear mucosa around the glands. Results of immunohistochemical staining reactions for cytokeratins at various epithelial cites and cholesteatoma in different studies were summarized in Table 1. Stainig epithelial sites are meatal skin, cartilage and bone of external ear canal, medial and lateral sides of tympanic membrane, middle ear mucosa and glandular epithelium. Cytokeratin 4,5,7,8,10,13,14,16,18,19 and 34bE12 were studied. In cholesteatoma, all of these were observed in almost all studies. In epithelial sites, a dispersion was observed.

Studies suggest that increasing number of researches about cytokeratins will also increase our understanding of pathogenesis of cholesteatoma. Progress about this subject will support surgical and medical treatments.
Table 1. Results of immunohistochemical staining reactions for cytokeratins at various epithelial sites and cholesteatoma in different studies.

<table>
<thead>
<tr>
<th></th>
<th>Ck 4</th>
<th>Ck 5</th>
<th>Ck 7</th>
<th>Ck 8</th>
<th>Ck 10</th>
<th>Ck 13</th>
<th>Ck 14</th>
<th>Ck 16</th>
<th>Ck 18</th>
<th>Ck 19</th>
<th>Ck34bE12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meatal skin</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>External ear canal (cartilage)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>- (48)</td>
<td>- (48)</td>
</tr>
<tr>
<td>External ear canal (bone)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>- (48)</td>
<td>- (48)</td>
</tr>
<tr>
<td>Tympanic membrane (lateral side)</td>
<td>+ (53)</td>
<td>- (53)</td>
<td>+ (47,53)</td>
<td>+ (53)</td>
<td>- (53)</td>
<td>+ (47,53)</td>
<td>+ (53)</td>
<td>+ (47)</td>
<td>+ (47)</td>
<td>+ (47)</td>
<td>+ (47)</td>
</tr>
<tr>
<td>Tympanic membrane (medial side)</td>
<td>+ (48)</td>
<td>- (48)</td>
<td>- (48)</td>
</tr>
<tr>
<td>Middle ear mucosa</td>
<td>+ (58)</td>
<td>+ (58)</td>
<td>- (53)</td>
<td>- (53)</td>
<td>+ (47,53,58)</td>
<td>- (53)</td>
<td>- (53)</td>
<td>+ (47,53,58)</td>
<td>- (53)</td>
<td>+ (47)</td>
<td>+ (47)</td>
</tr>
<tr>
<td>Middle ear glandular epithelium</td>
<td>± (58)</td>
<td>- (50,58)</td>
<td>± (50,58)</td>
</tr>
</tbody>
</table>

References

5. Sade J. Middle ear mucosa. Arch Otolaryngol 1966;84:137